é}@ MORGAN &CLAYPOOL PUBLISHERS

Microchip AVR®

Microcontroller Primer

Programming and Inz‘eq%lcing,
Third Edition

Steven F. Barrett
Daniel J. Pack

SYNTHESIS LECTURES ON
Dicrrar, CIrcurts AND SYSTEMS

Mitchell A. Thornton, Series Editor

Microchip AVR"

Microcontroller Primer:
Programming and Interfacing
Third Edition

Synthesis Lectures on Digital
Circuits and Systems

Editor
Mitchell A. Thornton, Southern Methodist University

'The Synthesis Lectures on Digital Circuits and Systems series is comprised of 50- to 100-page books
targeted for audience members with a wide-ranging background. The Lectures include topics that
are of interest to students, professionals, and researchers in the area of design and analysis of digital
circuits and systems. Each Lecture is self-contained and focuses on the background information
required to understand the subject matter and practical case studies that illustrate applications. The
format of a Lecture is structured such that each will be devoted to a specific topic in digital circuits
and systems rather than a larger overview of several topics such as that found in a comprehensive
handbook. The Lectures cover both well-established areas as well as newly developed or emerging
material in digital circuits and systems design and analysis.

Microchip AVR® Microcontroller Primer: Programming and Interfacing, Third Edition
Steven F. Barrett and Daniel J. Pack
2019

Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits
Alexis De Vos, Stijn De Baerdemacker, and Yvan Van Rentergen
2018

Boolean Differential Calculus
Bernd Steinbach and Christian Posthoff
2017

Embedded Systems Design with Texas Instruments MSP432 32-bit Processor
Dung Dang, Daniel J. Pack, and Steven F. Barrett
2016

Fundamentals of Electronics: Book 4 Oscillators and Advanced Electronics Topics
Thomas F. Schubert and Ernest M. Kim
2016

Fundamentals of Electronics: Book 3 Active Filters and Amplifier Frequency
Thomas F. Schubert and Ernest M. Kim
2016

iii
Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black,
Second Edition

Steven F. Barrett and Jason Kridner
2015

Fundamentals of Electronics: Book 2 Amplifiers: Analysis and Design
Thomas F. Schubert and Ernest M. Kim
2015

Fundamentals of Electronics: Book 1 Electronic Devices and Circuit Applications
Thomas F. Schubert and Ernest M. Kim
2015

Applications of Zero-Suppressed Decision Diagrams
Tsutomu Sasao and Jon T. Butler

2014

Modeling Digital Switching Circuits with Linear Algebra
Mitchell A. Thornton
2014

Arduino Microcontroller Processing for Everyone! Third Edition
Steven F. Barrett
2013

Boolean Differential Equations
Bernd Steinbach and Christian Posthoff
2013

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black
Steven F. Barrett and Jason Kridner
2013

Introduction to Noise-Resilient Computing
S.N. Yanushkevich, S. Kasai, G. Tangim, A.H. Tran, T. Mohamed, and V.P. Shmerko
2013

Atmel AVR Microcontroller Primer: Programming and Interfacing, Second Edition
Steven F. Barrett and Daniel J. Pack
2012

Representation of Multiple-Valued Logic Functions
Radomir S. Stankovic, Jaakko T. Astola, and Claudio Moraga
2012

Arduino Microcontroller: Processing for Everyone! Second Edition
Steven F. Barrett
2012

iv

Advanced Circuit Simulation Using Multisim Workbench
David Baez-Lépez, Félix E. Guerrero-Castro, and Ofelia Delfina Cervantes-Villagémez
2012

Circuit Analysis with Multisim
David Bdez-Lépez and Félix E. Guerrero-Castro
2011

Microcontroller Programming and Interfacing Texas Instruments M SP430, Part I
Steven F. Barrett and Daniel J. Pack
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part 11
Steven F. Barrett and Daniel J. Pack
2011

Pragmatic Electrical Engineering: Systems and Instruments
William Eccles
2011

Pragmatic Electrical Engineering: Fundamentals
William Eccles
2011

Introduction to Embedded Systems: Using ANSI C and the Arduino Development
Environment

David J. Russell

2010

Arduino Microcontroller: Processing for Everyone! Part 11
Steven F. Barrett
2010

Arduino Microcontroller Processing for Everyone! Part 1
Steven F. Barrett
2010

Digital System Verification: A Combined Formal Methods and Simulation Framework
Lun Li and Mitchell A. Thornton
2010

Progress in Applications of Boolean Functions
Tsutomu Sasao and Jon T. Butler

2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part 1T
Steven F. Barrett
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part I
Steven F. Barrett
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
II: Digital and Analog Hardware Interfacing
Douglas H. Summerville

2009

Designing Asynchronous Circuits using NULL Convention Logic (NCL)
Scott C. Smith and JiaDi
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
I: Assembly Language Programming

Douglas H.Summerville

2009

Developing Embedded Software using DaVinci & OMAP Technology
B.I. (Raj) Pawate
2009

Mismatch and Noise in Modern IC Processes
Andrew Marshall
2009

Asynchronous Sequential Machine Design and Analysis: A Comprehensive Development
of the Design and Analysis of Clock-Independent State Machines and Systems

Richard F. Tinder

2009

An Introduction to Logic Circuit Testing
Parag K. Lala
2008

Pragmatic Power
William J. Eccles
2008

Multiple Valued Logic: Concepts and Representations
D. Michael Miller and Mitchell A. Thornton
2007

Finite State Machine Datapath Design, Optimization, and Implementation
Justin Davis and Robert Reese
2007

Atmel AVR Microcontroller Primer: Programming and Interfacing
Steven F. Barrett and Daniel J. Pack
2007

Pragmatic Logic
William J. Eccles
2007

PSpice for Filters and Transmission Lines
Paul Tobin
2007

PSpice for Digital Signal Processing
Paul Tobin
2007

PSpice for Analog Communications Engineering
Paul Tobin
2007

PSpice for Digital Communications Engineering
Paul Tobin
2007

PSpice for Circuit Theory and Electronic Devices
Paul Tobin
2007

Pragmatic Circuits: DC and Time Domain
William J. Eccles
2006

Pragmatic Circuits: Frequency Domain
William J. Eccles
2006

Pragmatic Circuits: Signals and Filters
William J. Eccles
2006

High-Speed Digital System Design
Justin Davis

2006

Introduction to Logic Synthesis using Verilog HDL
Robert B.Reese and Mitchell A. Thornton
2006

Microcontrollers Fundamentals for Engineers and Scientists
Steven F. Barrett and Daniel J. Pack
2006

Copyright © 2019 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

Microchip AVR® Microcontroller Primer:
Programming and Interfacing, Third Edition
Steven F. Barrett and Daniel J. Pack

www.morganclaypool.com

ISBN: 9781681732046 paperback
ISBN: 9781681732053 ebook
ISBN: 9781681736235 hardcover

DOI 10.2200/S00803ED3V01Y201709DCS053

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS

Lecture #53

Series Editor: Mitchell A. Thornton, Southern Methodist University
Series ISSN

Print 1932-3166 Electronic 1932-3174

www.morganclaypool.com

Microchip AVR"

Microcontroller Primer:
Programming and Interfacing
Third Edition

Steven F. Barrett
University of Wyoming, Laramie, WY

Daniel J. Pack
University of Tennessee Chattanooga, TN

SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #53

L\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

This textbook provides practicing scientists and engineers a primer on the Microchip AVR” mi-
crocontroller. The revised title of this book reflects the 2016 Microchip Technology acquisition
of Atmel Corporation. In this third edition we highlight the popular ATmegal64 microcon-
troller and other pin-for-pin controllers in the family with a complement of flash memory up
to 128 KB. The third edition also provides an update on Atmel Studio, programming with a
USB pod, the gce compiler, the ImageCraft JumpStart C for AVR compiler, the Two-Wire
Interface (TWI), and multiple examples at both the subsystem and system level. Our approach
is to provide readers with the fundamental skills to quickly set up and operate with this in-
ternationally popular microcontroller. We cover the main subsystems aboard the ATmegal64,
providing a short theory section followed by a description of the related microcontroller subsys-
tem with accompanying hardware and software to operate the subsystem. In all examples, we
use the C programming language. We include a detailed chapter describing how to interface
the microcontroller to a wide variety of input and output devices and conclude with several sys-
tem level examples including a special eftects light-emitting diode cube, autonomous robots, a
multi-function weather station, and a motor speed control system.

KEYWORDS

microchip microcontroller, Microchip AVR®, ATmegal64, microcontroller inter-
facing, embedded systems design

To our families

xiii

Contents

Preface xxi
Acknowledgments i XXV
Microchip AVR” Architecture OVerviewoouoeueuenieao... 1
1.1 ATmegal64 Architecture Overview 1
1.1.1 Reduced Instruction Set Computer 1
1.1.2 Assembly Language Instruction Set............................ 2
1.1.3 ATmegal64 Architecture Overview.c.ccoveeeeiooo... 3
1.2 Nonvolatile and Data Memories 4
1.2.1 In-System Programmable Flash EEPROM 4
1.2.2 Byte-Addressable EEPROM 4
1.2.3 Static Random Access Memory i, 5
1.2.4 Programmable Lock Bits 5
1.3 PortSystem i 5
1.4 Peripheral Features Internal Subsystems 8
141 TimeBase ... 8
1.42 Timing Subsystem i 8
1.4.3 Pulse Width Modulation Channels 8
1.44 Serial Communicationsooiiiiiiiiiiii.... 9
1.4.5 Analog-to-Digital Converter 10
146 Interrupts.......... ... 10
1.5 Physical and Operating Parameters 11
151 Packaging i 11
1.5.2 Power Consumptionc..uuuuiiiiiinnnnn... 11
1.53 Speed Grades 11
1.6 Extended Example: ATmegal64 Testbench 13
1.6.1 Hardware Configuration............. i, 13
1.6.2 Software Configuration 13
1.7 Programming the ATmegal64...... 19

1.7.1 ImageCraft JumpStart C for AVR Compiler Download,
Installation, and ATmegal64 Programming 19

1.7.2 Atmel Studio Download, Installation, and ATmegal64

Programming 20

1.8 Software Portability 22
1.9 Applicationii 23
1.10 Laboratory Exercise: Testbench........ o i i i i, 26
111 SUMMATY ..ot 26
1.12 References and Further Reading 27
1.13 Chapter Problems. 27
Programming 29
2.1 OVEIVIEW ..ttt 29
22 TheBigPicture. 29
2.3 AnatomyofaProgram......... 30
231 Comments.oiiiiiii 31

232 IncludeFiles i 32

233 Functions......... ... 32

2.3.4 Program Constants i 34

2.3.5 Interrupt Handler Definitions 35

23.6 Variables 35

237 MainProgram......... 36

2.4 Fundamental Programming Concepts.............., 37
241 OPerators.uuuuuu et 37

2.4.2 Programming Constructs 41

2.43 Decision Processing i i 43

2.5 Application 46
2.6 Laboratory Exercise i 49
2.7 SUIMMATY ..ttt ettt e e 50
2.8 References and Further Reading, 50
2.9 Chapter Problems.......... 50
Serial Communication Subsystem oo 53
3.1 OVEIVIEW ..ttt 53
3.2 Serial Communication Terminology 54
3.2.1 Asynchronous vs. Synchronous Serial Transmission 54

322 BaudRate 54

323 FullDuplex ... 54

3.2.4 Nonreturn to Zero Coding Format 54
3.2.5 The RS-232 Communication Protocol......................... 55
326 Parity.......o 55
3.2.7 American Standard Code for Information Interchange 55
33 Serial USART ... 55
3.3.1 System Overviewoiiiiiiiiiiiiiiiii 57
3.3.2 System Operation and Programming.......................... 60
3.3.3 Example: Serial LCD oo 62
3.3.4 Example: Voice Chip il 66
3.3.5 Example: PC Serial Monitor 70
3.3.6 Example: Global Positioning System 75
3.3.7 Serial Peripheral Interface................ 75
3.3.8 Example: ATmegal64 Programming 79
3.3.9 Example: LED Strip......... o 79
3.4 Two-Wire Serial Interface, 86
3.41 Example: TWI Compatible LCD 88
3.5 Laboratory Exerciseoiiiiiiii 96
3.6 SUmMMAry ... 96
3.7 References and Further Reading o ... 96
3.8 Chapter Problems. 96
Analog-to-Digital Conversion 99
41 OVEIVIEW ...ttt 99
42 Background Theory 100
4.2.1 Analogvs. Digital Signals..................... 100
4.2.2 Sampling, Quantization, and Encoding. 102
42.3 Resolutionand DataRate.................................. 106
4.3 Analog-to-Digital Conversion Process 107
43.1 Operational Amplifiersottt 110
4.4 ADC Conversion Technologies., 113
4.4.1 Successive Approximation iiiiiiiiia 114
442 Integration............ 114
443 Counter-Based Conversion 116
4.4.4 Parallel Conversion ... 116
4.5 'The ATmel ATmegal64 ADC System, 116
451 Block Diagram i 118

452 RegIStersottt 118

4.5.4 Digital-to-Analog Conversionccoiiiiiinna...
4.6 SUIMIMATY ...ttt ittt e e ettt e
4.7 References and Further Reading o ...
4.8 Chapter Problems.
Interrupt Subsystem
5.1 Interrupt Theory
5.2 ATmegal64 Interrupt Systemcuuiiiiiiiiiennninne...
5.3 Programming an Interrupt...... o i
5.4 Applicationot
5.4.1 Atmel AVR Visual Studio gcc Compiler Interrupt Template
5.4.2 ImageCraft JumpStart C for AVR Compiler Interrupt Template . .
5.4.3 External Interrupt Example Using the Atmel AVR Visual Studio
gec Compiler. ...
5.4.4 An Internal Interrupt Example Using the JumpStart C for AVR
Compiler.o
55 Summary ...
5.6 References and Further Reading o ...
5.7 Chapter Problems........
Timing Subsystem i
6.1 Overview
6.2 Timing-Related Terminologyo ...
6.2.1 Frequency
6.2.2 Period
623 DutyCycle ...
6.3 Timing System OVerviewuuuuuuiiununnneenneen..
6.4 Applications
6.4.1 Input Capture—Measuring External Event Timing.............
6.42 CountingEvents........ ... o i
6.4.3 Output Compare—Generating Timing Signals to Interface
External Devices i
6.4.4 Pulse Width Modulation (PWM)
6.5 Overview of the Microchip Timers,
6.6 TimerOSystem

45.3 Programmingthe ADC

6.6.1 Modes of Operation,

6.6.2 Timer O Registers 163
6.7 Timer 1. . o e 166
6.7.1 Timer 1 Registers ..., 166
6.8 Timer 2. 170
6.9 Programming the Timer Systemo, 174
6.9.1 PrecisionDelay 174
6.9.2 Pulse Width Modulation, 177
6.9.3 InputCapture Mode........... 188
6.10 Servo Motor Control with the PWM system 197
6.11 Summary 202
6.12 References and Further Reading oo .. 202
6.13 Chapter Problems. 203
Microchip AVR® Operating Parameters and Interfacing 205
7.1 Operating Parameters. i 206
72 InputDeviceso 209
7.2.1 Switches 209
7.2.2 Switch Debouncing. 210
723 Keypads........o.. 211
724 SeNSOIS. ...ttt 211
7.3 Output Devices i 215
7.3.1 Light-Emitting Diodes. 215
7.3.2 Seven-Segment LED Displays........................... ... 217
7.3.3 Tristate LED Indicator........ i 217
7.3.4 Dot Matrix Display. ... 220
7.3.5 Liquid Crystal Display 220
7.3.6 High-Power DC Devices, 224
7.4 DC Motor Speed and Direction Control 225
7.4.1 H-Bridge Direction Control 227
7.4.2 Servo Motor Interface. i il 227
7.4.3 Stepper Motor Control, 227
744 ACDevices 235
7.5 Interfacing to Miscellaneous DC Devices............................ 240
7.5.1 Sonalerts, Beepers, Buzzersl 241
7.5.2 VibratingMotor 241

753 DCEFan .o 241

754 BilgePump ... 241
7.6 SUMMATIY ..ottt ittt 243
7.7 References and Further Reading 243
7.8 Chapter Problems. 244
Embedded Systems Design 245
8.1 Whatisan Embedded System?......... L 245
8.2 Embedded System Design Process 245
8.2.1 Project Descriptionoo i 246
8.2.2 Background Research L. 246
823 Pre-Design 246
824 Design ... 248
8.2.5 Implement Prototype il 250
8.2.6 Preliminary Testing..............o i i, 250
8.2.7 Complete and Accurate Documentation 251
8.3 Special Effects LED Cube i il 251
8.3.1 Construction Hints i 253
832 LEDCubeCode...... .o, 253
8.4 Autonomous Maze Navigating Robots 268
8.4.1 Dagu Magician Robot il 268
8.42 Requirements 273
8.43 Circuit Diagram i 273
8.44 Structure Chart........ 275
8.4.5 UML Activity Diagrams 275
8.4.6 Microcontroller Code il 275
8.5 Mountain Maze Navigating Robot 283
8.5.1 Description i 283
8.5.2 Requirementsiiiiiiiiiiiiii i 285
8.5.3 Circuit Diagram 285
8.54 Structure Chart ...t 285
8.5.5 UML Activity Diagrams 285
8.5.6 Microcontroller Code il 285
8.5.7 MountainMaze i 291
8.5.8 Project Extensions.............. il 293
8.6 Weather Station oo 294
8.6.1 Requirements 294

8.6.2 Structure Chartottt 294

8.6.3 Circuit Diagram 295
8.6.4 UML Activity Diagramso, 295
8.6.5 Microcontroller Code il 298
8.7 Motor Speed Control. 309
8.8 Circuit Diagram 309
8.8.1 Requirementsoiiiiiiiiiii 312
8.8.2 Structure Chart....... i 312
8.8.3 UML Activity Diagrams, 312
8.8.4 Microcontroller Code i 313
8.9 SUMMAry 321
8.10 References and Further Reading 321
8.11 Chapter Problems. 321
ATmegal64 HeaderFile 323
Authors’ Biographies 343

Preface

In 2006, Morgan & Claypool Publishers (M&C) released our textbook Microcontrollers Fun-
damentals for Engineers and Scientists. 'The purpose of this textbook was to provide practicing
scientists and engineers a tutorial on the fundamental concepts and the use of microcontrollers.
The textbook presented the fundamental concepts common to all microcontrollers. Our goal
for writing this follow—on book is to present details on a specific microcontroller family, the
Microchip AVR” ATmegal64 Microcontroller family. This family includes the ATmegal64
microcontroller which is equipped with four 8-bit input/output ports, a plethora of subsys-
tems, and a 16K-bytes flash program memory. Other microcontrollers in the family include the
pin—for—pin compatible ATmega324 (32K-bytes program memory), ATmega644 (64K-bytes
program memory), and the ATmegal284 (128K-bytes program memory).

Why Microchip microcontrollers? There are many excellent international companies that
produce microcontrollers. Some of the highlights of the Microchip AVR” microcontroller line
include:

* high performance coupled with low power consumption,

* outstanding flash memory technology,

* reduced instruction set computer Harvard Architecture,

* single-cycle instruction execution,

* wide variety of operating voltages (1.8-5.5 VDC),

* architecture designed for the C language,

» one set of development tools for the entire AVR” microcontroller line, and
* in—system programming, debugging, and verification capability.

Although all of these features are extremely important, we have chosen to focus on the
Microchip AVR® microcontroller line of microcontrollers for this primer for a number of other
related reasons.

* 'The learning curve for Microchip microcontrollers is gentle. If this is your first exposure
to microcontrollers, you will quickly come up to speed on microcontroller programming
and interfacing. If you already know another line of processors, you can quickly apply your
knowledge to this powerful line of 8-bit processors.

xxii PREFACE

* It is relatively inexpensive to get started with the Microchip AVR® microcontroller line.
'The microcontrollers themselves are inexpensive, and the compilers and programming
hardware and software are easily affordable.

* The AVR” microcontroller line provides a full range of processing power, from small, yet
powerful 8-pin processors to complex 100-pin processors. The same compiler and pro-
gramming hardware may be used with a wide variety of microcontrollers.

* Many of the AVR® microcontrollers are available in dual inline package (DIP), which
makes them readily useable on a printed circuit board prototype (e.g., capstone design
projects).

* Many of the microcontrollers in the AVR” microcontroller line are pin-for-pin compatible
with one another. This allows you to easily move up and down the AVR® microcontroller
line as your project becomes better defined.

* Microchip has documentation available for every microcontroller at your fingertips. Sim-
ply visit www.microchip. com. Furthermore, Microchip customer support is good and re-
sponsive.

» 'There is worldwide interest in the AVR® microcontroller line. We would be remiss to not
mention AVR Freaks”. This is a dedicated, international group of AVR” microcontroller
experts who share their expertise online with other high—power users and novices alike.

Approach of the book
If this is your first exposure to microcontrollers, we highly recommend that you read first our
M&C textbook, Microcontrollers Fundamentals for Engineers and Scientists. It will provide you
the background information necessary to fully appreciate the contents of this textbook. This
textbook picks up where the first one left off. We have received permission from M&C to include
some of the background material from the first textbook in this text to allow for a complete
stand-alone product.

Our approach in this textbook is to provide you with the fundamental skills to quickly get
set up and operate an Microchip microcontroller. We have chosen to use the AVR” ATmegal64
as a representative sample of the AVR” microcontroller line (more on this processor later). The
knowledge you gain on the ATmegal64 can be easily translated to every other microcontroller
in the AVR® microcontroller line.

The M&C textbooks are designed to be short tutorials on a given topic. Therefore, our
treatment of each topic will provide a short theory section followed by a description of the related
microcontroller subsystem with accompanying hardware and software to exercise the subsystem.
In all examples, we use the C programming language. There are many excellent C compilers
available for the Microchip AVR” microcontoller line. We have chosen the Atmel Studio inte-
grated development platform (IDP) for its short learning curve and ease of use. We also provide

www.microchip.com

PREFACE xxiii

examples using the ImageCraft JumpStart C for AVR compiler www.imagecraft.com. We
use the USB compatible Microchip AVR Dragon employing In—-System Programming (ISP)

techniques.
NEWIN THE THIRD EDITION
'The third edition provides the following updated and expanded features:

* examples provided for the ATmegal64. Easily ported to other compatible ATmega pro-

Cessors;
* multiple new, fully worked examples;
* ISP programming with the Atmel AVR Dragon;

* examples using serial UART configured LCD, voice synthesis chip, and serial monitor on
host PC;

* tri—color light-emitting diode (LED) strip controlled by SPI system;
* detailed example using TWI (I2C) system;

* detailed heart beat monitor example using input capture system;

» controlling AC load using PowerSwitch Tail II;

* extended examples for 3D special effects LED cube, maze robots, a weather station, motor
speed control circuit; and

* support provided for both the Atmel AVR Studio gee compiler and the ImageCraft Jump-
Start C for AVR compiler.

Steven F. Barrett and Daniel J. Pack
Laramie, WY and Chattanooga, TN
September 2019

www.imagecraft.com

Acknowledgments

There have been many people involved in the conception and production of this book. In 2005,
Joel Claypool of Morgan & Claypool Publishers, invited us to write a book on microcontrollers
for his new series titled “Synthesis Lectures on Digital Circuits and Systems.” The result was the
book Microcontrollers Fundamentals for Engineers and Scientists. Since then we have been regular
contributors to the series. Our goal has been to provide the fundamental concepts common to all
microcontrollers and then apply the concepts to the specific microcontroller under discussion.
We believe that once you have mastered these fundamental concepts, they are easily transportable
to different processors. As with many other projects, he has provided his publishing expertise
to convert our final draft into a finished product. We thank him for his support on this project
and many others. He has provided many novice writers the opportunity to become published
authors. His vision and expertise in the publishing world made this book possible. We thank Sara
Kreisman of Rambling Rose Press, Inc. for her editorial expertise. We also thank Dr. C.L. Tondo
of T&T TechWorks, Inc. and his staff for working their magic to convert our final draft into a
beautiful book.

We also thank Sparkfun, Adafruit, ImageCraft, and Microchip for their permission to use
their copyrighted material and screenshots throughout the text. Several Microchip acknowledg-
ments are in order.

* This book contains copyrighted material of Microchip Technology Incorporated repli-
cated with permission. All rights reserved. No further replications may be made without
Microchip Technology Inc’s prior written consent.

* Microchip AVR® Microcontroller Primer: Programming and Interfacing, Third Edition is an
independent publication and is not affiliated with, nor has it been authorized, sponsored,
or otherwise approved by Microchip.

Most of all, we thank our families. Our work could not have come to fruition without
the sacrifice and encouragement of our families over the past fifteen plus years. Without you,
none of this would matter. We love you!

Steven F. Barrett and Daniel J. Pack
Laramie, WY and Chattanooga, TN
September 2019

CHAPTER 1

Microchip AVR® Architecture

Overview

Objectives: After reading this chapter, the reader should be able to:
* provide an overview of the RISC architecture of the ATmegal64;
* describe the different ATmegal64 memory components and their applications;
* explain the ATmegal64 internal subsystems and their applications;
* highlight the operating parameters of the ATmegal64; and

* summarize the special ATmegal64 features.

1.1 ATMEGA164 ARCHITECTURE OVERVIEW

In this section, we describe the overall architecture of the Microchip AVR ATmegal64. We
begin with an introduction to the concept of the reduced instruction set computer (RISC) and
briefly describe the Microchip Assembly Language Instruction Set. We program mainly in C
throughout the course of the book. We then provide a detailed description of the ATmegal64

hardware architecture.

1.1.1 REDUCED INSTRUCTION SET COMPUTER
In our first Morgan & Claypool (M&C) textbook [Barrett and Pack, 2006], we described a

microcontroller as an entire computer system contained within a single integrated circuit or
chip. Microcontroller operation is controlled by a user-written program interacting with the
fixed hardware architecture resident within the microcontroller. A specific microcontroller ar-
chitecture can be categorized as accumulator-based, register-based, stack-based, or a pipeline
architecture.

'The Microchip ATmegal64 is a register-based architecture. In this type of architecture,
both operands of an operation are stored in registers collocated with the central processing unit
(CPU). This means that before an operation is performed, the computer loads all necessary data
for the operation to its CPU. 'The result of the operation is also stored in a register. During pro-
gram execution, the CPU interacts with the register set and minimizes slower memory accesses
for both instructions and data. Memory accesses are typically handled as background operations.

2 1. MICROCHIP AVR® ARCHITECTURE OVERVIEW

Coupled with the register-based architecture is an instruction set based on the RISC con-
cept. A RISC processor is equipped with a complement of very simple and efficient basic op-
erations. More complex instructions are built up from these basic operations. This allows for
efficient program operation. The Microchip ATmegal64 is equipped with 131 RISC-type in-
structions. Most can be executed in a single clock cycle. The ATmegal64 is also equipped with
additional hardware to allow for the multiplication operation in two clock cycles. In many other
microcontroller architectures, multiplication typically requires many more clock cycles. For ad-
ditional information on the RISC architecture, the interested reader is referred to Hennessy and
Patterson [2003].

The Microchip ATmegal64 is equipped with 32 general-purpose 8-bit registers that are
tightly coupled to the processor’s arithmetic logic unit within the CPU. Also, the processor is
designed following the Harvard Architecture format. That is, it is equipped with separate, ded-
icated memories and buses for program instructions and data information. The register-based
Harvard Architecture coupled with the RISC-based instruction set allows for fast and efficient
program execution and allows the processor to complete an assembly language instruction every
clock cycle. Microchip indicates the ATmegal64 can execute 20 million instructions per second
when operating at a clock speed of 20 MHz and with the supply voltage between 4.5 and 5.5
VDC.

1.1.2 ASSEMBLY LANGUAGE INSTRUCTION SET

An instruction set is a group of instructions a machine “understands” how to execute. A large
number of instructions provide flexibility but require more complex hardware. Thus, an instruc-
tion set is unique for a given hardware configuration and cannot be used with another hardware
configuration. Microchip has equipped the ATmegal64 with 131 different instructions.

For the most efficient and fast execution of a given microcontroller, assembly language
should be used. Assembly language instructions are written to efficiently interact with a specific
microcontroller’s resident hardware. To effectively use the assembly language, the programmer
must be thoroughly familiar with the low-level architecture details of the controller. Further-
more, the learning curve for a given assembly language is quite steep and lessons learned do not
always transfer to another microcontroller. This is part of the reason programmers prefer to use
a high-level language over an assembly language.

We program the Microchip ATmegal64 using the C language throughout the text. The
C programming language allows for direct control of microcontroller hardware at the register
level while being portable to other microcontrollers in the AVR” microcontroller line. When a
C program is compiled during the software development process, the program is first converted
to assembly language and then to the machine code for the specific microcontroller.

We must emphasize that programming in C is not better than assembly language or vice
versa. Both approaches have their inherent advantages and disadvantages. We have chosen to

use C in this textbook for the reasons previously discussed.

1.1. ATMEGA164 ARCHITECTURE OVERVIEW 3
1.1.3 ATMEGA164 ARCHITECTURE OVERVIEW

We have chosen the ATmegal64 as a representative of the Microchip AVR line of microcon-
trollers. Lessons learned with the ATmegal64 may be easily adapted to all other processors in
the AVR microcontroller line. A block diagram of the Microchip ATmegal64’s architecture is
provided in Figure 1.1.

Power
Supervision
RESET ———> POR/BOD & PORT A (8) PORT B (8) |
f‘i RESET i)

el

1 | ,
| Watchdog A/D Analog
Oscillator Convertor Comparator ~ [€ » |«—>»| USARTO
XTAL1 |

Internal
Bandgap Reference

'ﬁ Oscillator
| Circuits/ <> EEPROM

SPI [« >
|:| Clock Ij

_l__| |L|— Generation
— XTAL2 A k 8bit T/CO [« >

|
|
|
|
|
|
|
AVR cru |
|
|
|
|
|
|

Loenret | 16 bit T/C 1
<> JTAG/OCD Y]
8bit T/C 2
A y I:l:
| TWI | | FLASH | | SRAM | | 16bit T/C3 [J [USART L
11 il

g A

1

y i y y {
PORT C (8) PORT D (8) :
f v

TOSC2/PC7 TOSCI1/PC6 PC5..0 PD7..0

Figure 1.1: Microchip AVR ATmegal64 block diagram. Figure used with permission of Mi-
crochip. All rights reserved.

As can be seen from the figure, the ATmegal64 has external connections for power sup-
plies (VCC, GND, AVCC, and AREF), an external time base (XTAL1 and XTAL2) input pins
to drive its clocks, processor reset (active low RESET), and four 8-bit ports (PA0-PA7, PCO-
PC7, PB0-PB7, and PD0-PD7), which are used to interact with the external world. These ports
may be used as general purpose digital input/output (I/O) ports or they may be used for their al-
ternate functions. The ports are interconnected with the ATmegal164’s CPU and internal subsys-
tems via an internal bus. The ATmegal64 also contains a timer subsystem, an analog-to-digital

4 1. MICROCHIP AVR® ARCHITECTURE OVERVIEW

converter (ADC), an interrupt subsystem, memory components, and a serial communication
subsystem.

In the next several sections, we briefly describe each of these internal subsystems shown
in the figure. Detailed descriptions of selected subsystem operation and programming appear
in latter parts of the book. Since we cannot cover all features of the microcontroller due to
limited space, we focus on the primary functional components of the microcontroller to fulfill
the purpose of this book as a basic primer to the ATmegal64.

1.2 NONVOLATILE AND DATA MEMORIES

The ATmegal64 is equipped with three main memory sections: flash electrically erasable pro-
grammable read-only memory (EEPROM)), static random access memory (SRAM), and byte-
addressable EEPROM for data storage. We discuss each memory component in turn.

1.2.1 IN-SYSTEM PROGRAMMABLE FLASH EEPROM
Bulk programmable flash EEPROM is typically used to store programs. It can be erased and

programmed as a single unit. Also, should a program require a large table of constants, it may
be included as a global variable within a program and programmed into flash EEPROM with
the rest of the program. Flash EEPROM is nonvolatile, meaning memory contents are retained
when microcontroller power is lost. The ATmegal64 is equipped with 16 KB of onboard re-
programmable flash memory. This memory component is organized into 8 K locations, with 16
bits at each location.

The flash EEPROM is in-system programmable. In-system programmability (ISP) means
the microcontroller can be programmed while resident within a circuit. It does not have to be
removed from the circuit for programming. Instead, a host personal computer (PC), connected
via a specialized programming cable and pod, downloads the program to the microcontroller.
Alternately, the microcontroller can be programmed outside its resident circuit using a flash
programmer board. We employ the AVR Dragon for ISP programming the ATmegal64. This
development board is readily available from a number of suppliers. It may be used to program
many different microcontrollers in the ATmega and AT'tiny product families.

1.2.2 BYTE-ADDRESSABLE EEPROM

Byte-addressable memory is used to permanently store and recall variables during program ex-
ecution. It too is nonvolatile. That is, it retains its contents even when power is not available.
It is especially useful for logging system malfunctions and fault data during program execution.
It is also useful for storing data that must be retained during a power failure but might need to
be changed periodically. Examples where this type of memory is used are found in applications
to store system parameters, electronic lock combinations, and automatic garage door electronic

unlock sequences. The ATmegal64 is equipped with 512 B of byte-addressable EEPROM.

1.3. PORT SYSTEM 5
1.2.3 STATIC RANDOM ACCESS MEMORY

SRAM is volatile. That is, if the microcontroller loses power, the contents of SRAM mem-
ory are lost. It can be written to and read from during program execution. The ATmegal64 is
equipped with 1000 B (actually 1120) of SRAM. A small portion (96 locations) of the SRAM is
set aside for the general-purpose registers used by the central processing unit (CPU) and also for
the input/output (I/0) and peripheral subsystems aboard the microcontroller. A complete AT-
megal64 register listing and accompanying header file is provided in the Appendices. During
program execution, RAM is used to store global variables, support dynamic memory allocation
of variables, and provide a location for the stack (to be discussed later).

1.2.4 PROGRAMMABLE LOCK BITS

To provide for memory security from tampering, the ATmegal64 is equipped with memory
lock bits. These lock bits are programmed using the Microchip AVR Dragon. The lock bits may
be configured for the following options:

* no memory lock features enabled;

* no further programming of memory is allowed using parallel or serial programming tech-
niques; or

* no further programming or verification of memory is allowed using parallel or serial pro-
gramming techniques.

1.3 PORT SYSTEM

'The Microchip ATmegal64 is equipped with four 8-bit general-purpose, digital I/O ports des-
ignated PORTA, PORTB, PORTC, and PORTD. All of these ports also have alternate func-
tions, which are described later. In this section, we concentrate on the basic digital I/O port
features.

As shown in Figure 1.2, each port has three registers associated with it:

* Data Register (PORTXx) used to write output data to the port,

* Data Direction Register (DDRx) used to set a specific port pin to either output (1) or
input (0), and

* Input Pin Address (PINx) used to read input data from the port.

Figure 1.2b describes the settings required to configure a specific port pin to either input
or output. If selected for input, the pin may be selected for either an input pin or to operate in
the high-impedance (Hi-Z) mode. In Hi-Z mode, the input appears as high impedance to a
particular pin. If selected for output, the pin may be further configured for either logic low or
logic high.

6 1. MICROCHIP AVR” ARCHITECTURE OVERVIEW

Port x Data Register—PORTx

7 0
Port x Data Direction Register —DDRx

7 0
Port x Input Pins Address —PINx

7 0
(a)
DDxn | PORTxn | /O Comment
0 0 Input | Tri-state (Hi-Z)
0 1 Input | Source current if externally pulled low
1 0 Output | Qutput Low (Sink)
1 1 Output | Qutput High (Source)

x: port designator (A, B, C, D)
n: pin designator (0-7)

(b)

Figure 1.2: ATmegal64 port configuration registers: (a) port-associated registers and (b) port
pin configuration.

1.3. PORT SYSTEM 7

Port pins are usually configured at the beginning of a program for either input or output,
and their initial values are then set. Usually, all eight pins for a given port are configured simul-
taneously, even if all eight pins may not be used during a program execution. A code example to
configure a port is shown below. Note that because we are using the C programming language
with a compiler include file, the register contents are simply referred to by name. Note that the
data direction register (DDRx) is first used to set the pins as either input or output, and then the
data register (PORTYx) is used to set the initial value of the output port pins. It is a good design
practice to configure unused microcontroller pins as outputs. This prevents them from acting as
a source for noise input.

//***

//initialize_ports: provides initial configuration for I/0 ports
[/%Koo KoK o K ok ok ok Kok ok o ok ook ook oK oK K oK oK oK oK K K K KK oK KK KK KoK oK K ok K ok K ok K o

void initialize_ports(void)

{

DDRA=Oxfc; //set PORTA[7:2] as output, PORTA[1:0]
//as input (1111_1100)

PORTA=0x03; //initialize PORTA[7:2] low, PORTA[1:0]
//current source

DDRB=0xa0; //PORTB[7:4] as output, set PORTB[3:0] as input

PORTB=0x00; //disable PORTB pull-up resistors

DDRC=0xff; //set PORTC as output

PORTC=0x00; //initialize low

DDRD=0xff; //set PORTD as output

PORTD=0x00; //initialize low

}

To read the value from a port pin configured as input, the following code could be used.
Note the variable used to read the value from the input pins is declared as an unsigned char
because both the port and this variable type are 8 bits wide. A brief introduction to programming
in C is provided in Chapter 2.

unsigned char new_PORTB; //new values of PORTB

new_PORTB = PINB; //read PORTB

8 1. MICROCHIP AVR® ARCHITECTURE OVERVIEW
1.4 PERIPHERAL FEATURES INTERNAL SUBSYSTEMS

In this section, a brief overview of the peripheral features of the ATmegal64 is provided. It
should be emphasized that these features are the internal subsystems contained within the con-
fines of the microcontroller chip. These built-in features allow complex and sophisticated tasks
to be accomplished by the microcontroller.

1.4.1 TIME BASE

'The microcontroller is a complex synchronous state machine. It responds to program steps in a
sequential manner as dictated by a user-written program. The microcontroller sequences through
a predictable fetch, decode, and execute sequence. Each unique assembly language program in-
struction issues a series of signals to control the microcontroller hardware to accomplish instruc-
tion related operations.

The speed at which a microcontroller sequences through these actions is controlled by a
precise time base, called the clock. The clock source is routed throughout the microcontroller to
be used as a common time base for all peripheral subsystems. The ATmegal64 may be clocked
internally, using a user-selectable resistor capacitor (RC) time base, operating at approximately
8 MHz or externally using a timing crystal or resonator. The RC internal time base is selected
using programmable fuse bits. We show its use in the application section.

To provide for a wider range of frequency selections, an external source may be used. The
external time sources, in order of increasing accuracy and stability, are an external RC network,
a ceramic resonator, or a crystal oscillator. The system designer chooses the time base frequency
and clock source device appropriate for the application at hand. Generally speaking, a micro-
controller is operated at the lowest possible frequency for a given application since clock speed
is linearly related to power consumption. The clock source may be divided down by a user se-
lectable value of 1, 2, 4, 8, 16, 32, 64, 128, or 256. The clock divide by value is set into the clock
prescaler select (CLKPS) register or a divide by 8 value may be set with a fuse.

1.4.2 TIMING SUBSYSTEM

The ATmegal64 is equipped with a complement of timers that allows the user to generate a pre-
cision output signal, measure the characteristics (period, duty cycle, frequency) of an incoming
digital signal, or count external events. Specifically, the ATmegal64 is equipped with two 8-bit
timer/counters and one 16-bit counter. We discuss the operation, programming, and application
of the timing system in Chapter 6.

1.4.3 PULSE WIDTH MODULATION CHANNELS
A pulse width modulated (PWM) signal is characterized by a fixed frequency and a varying

duty cycle. Duty cycle is the percentage of time a repetitive signal is logic high during the signal

1.4. PERIPHERAL FEATURES INTERNAL SUBSYSTEMS 9
period. It may be formally expressed as

duty cycle (%) = (on time/period) x (100%).

The ATmegal64 family is equipped with up to six PWM channels. The PWM chan-
nels coupled with the flexibility of dividing the time base down to different PWM subsystem
clock source frequencies allow the user to generate a wide variety of PWM signals, from rela-
tively high-frequency, low-duty cycle signals to relatively low-frequency, high-duty cycle signals.
PWM signals are used in a wide variety of applications, including controlling the position of a
servo motor and controlling the speed of a DC motor. We discuss the operation, programming,

and application of the PWM system in Chapter 6.

1.4.4 SERIAL COMMUNICATIONS

'The ATmegal64 is equipped with a host of different serial communication subsystems, including
the universal synchronous and asynchronous serial receiver and transmitter (USART), the serial
peripheral interface (SPI), and the two-wire serial interface (TWI). What all of these systems
have in common is the serial transmission of data. In a serial communications transmission
scheme, data are sent a single bit at a time from transmitter to receiver.

Serial USART

'The serial USART is used for full duplex (two-way) communication between a receiver and
transmitter. This is accomplished by equipping the ATmegal64 with independent hardware for
the transmitter and receiver. The USART is typically used for asynchronous communication.
That is, there is not a common clock between the transmitter and receiver to keep them syn-
chronized with one another. To maintain synchronization between the transmitter and receiver,
framing start and stop bits are used at the beginning and end of each data byte in a transmission
sequence.

The ATmegal64 USART is quite flexible. It has two independent channels designated
USARTO and USARTT1. It has the capability to be set to a variety of data transmission rates
known as the baud (bits per second) rate. The USART may also be set for data bit widths of
5-9 bits with one or two stop bits. Furthermore, the ATmegal64 is equipped with a hardware-
generated parity bit (even or odd) and parity check hardware at the receiver. A single parity bit
allows for the detection of a single bit error within a byte of data. The USART may also be
configured to operate in a synchronous mode. The flexible configuration of the USART system
allows it to be used with a wide variety of peripherals including serial configured liquid crystal
displays (LCDs) and a speech chip. The USART is also used to communicate microcontroller
status to a host PC. We discuss the operation, programming, and application of the USART in
Chapter 3.

10 1. MICROCHIP AVR® ARCHITECTURE OVERVIEW

Serial Peripheral Interface

The ATmegal64 serial peripheral interface (SPI) can also be used for two-way serial commu-
nication between a transmitter and a receiver. In the SPI system, the transmitter and receiver
share a common clock source. This requires an additional clock line between the transmitter and
receiver but allows for higher data transmission rates, as compared with the USART.

The SPI may be viewed as a synchronous 16-bit shift register with an 8-bit half residing
in the transmitter and the other 8-bit half residing in the receiver. The transmitter is desig-
nated the master because it provides the synchronizing clock source between the transmitter
and the receiver. The receiver is designated as the slave. The SPI may be used to communicate
with external peripheral devices such as large seven segment displays, digital-to-analog converts
(DAC:s), and LED strips. We discuss the operation, programming, and application of the SPI
in Chapter 3.

Two-Wire Serial Interface

'The TWI subsystem allows the system designer to network a number of related devices (micro-
controllers, transducers, displays, memory storage, etc.) together into a system using a two-wire
interconnecting scheme. The TWI allows a maximum of 128 devices to be connected together.
Each device has its own unique address and may both transmit and receive over the two-wire
bus at frequencies up to 400 kHz. This allows the device to freely exchange information with
other devices in the network within a small area.

1.4.5 ANALOG-TO-DIGITAL CONVERTER
The ATmegal64 is equipped with an eight-channel ADC subsystem. The ADC converts an

analog signal from the outside world into a binary representation suitable for use by the mi-
crocontroller. The ATmegal64 ADC has 10-bit resolution. This means that an analog voltage
between 0 and 5 V will be encoded into one of 1024 binary representations between (000);6 and
(3FF)16. This provides the ATmegal64 with a voltage resolution of approximately 4.88 mV. It
is important to emphasize the ADC clock frequency must be set to a value between 50 and 200

kHZz to obtain accurate results. We discuss the operation, programming, and application of the
ADC in Chapter 4.

1.4.6 INTERRUPTS

'The normal execution of a program follows a designated sequence of instructions. However,
sometimes, this normal sequence of events must be interrupted to respond to high-priority faults,
and status generated from both inside and outside the microcontroller. When these higher-
priority events occur, the microcontroller must temporarily suspend its normal operation and
execute event specific actions called an interrupt service routine. Once the higher priority event
has been serviced, the microcontroller returns and continues processing the normal program.

